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The symmetry principle in continuum mechanics�
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Abstract

For problems of the mechanics of an anisotropic inhomogeneous continuum, theorems are given concerning the uninterrupted
symmetrical and antisymmetrical analytical continuation of the solution through the plane part of the boundary surface of the medium.
Theorems are given for two types of mechanics problem; in the first of these both symmetrical and antisymmetrical continuations
of the solution are allowed, while in the second only symmetrical continuation of the solution is allowed. Problems of the first
type include problems which are reduced to linear thermoelastic dynamic differential equations of motion of an inhomogeneous
anisotropic medium possessing a plane of elastic symmetry, to linear thermoelastic dynamic differential equations of motion of
an inhomogeneous Cosserat medium, to non-linear differential equations describing the static elastoplastic stress state of a plate,
etc. The second type includes problems which are reduced to non-linear differential equations describing geometrically non-linear
strains of shells, to Navier–Stokes equations, etc. These theorems extend the principle of mirror reflection (the Riemann–Schwartz
principle of symmetry) to linear and non-linear equations of continuum mechanics. The uninterrupted continuation of the solutions
is used to solve problems of the equilibrium state of bodies of complex shape.
© 2007 Elsevier Ltd. All rights reserved.

The first publication on the uninterrupted continuation of the solution of static boundary problems of elasticity
theory through the plane part of the boundary of a body (in the case of a homogeneous isotropic medium), as indicated
by Duffin,1 was the work by Somigliana (1902). In the 1960s, many studies appeared on the analytical continuation of
the solution of static boundary problems of elasticity theory for a homogeneous isotropic body through the plane part
of the boundary of the body1,2 and through the spherical part of the boundary.3–5 For an elastic homogeneous isotropic
medium, the boundary conditions of symmetry and antisymmetry and the continuation of solutions through the plane
part of the boundary of the body that correspond to them was considered in Refs 1,2.

The new results obtained below include the uninterrupted analytical continuation of the solution of problems of
continuum mechanics in the following cases: 1) when the elastic continuum is inhomogeneous and anisotropic, and
when this medium is examined in dynamic conditions of strain; 2) when the motion of the continuum is described by
non-linear differential equations.

1. Some definitions

Let � be a certain region and let �* be its mirror reflection in the plane y = 0. This means that M∗
0 (x0, −y0, z0) ∈ �̄∗

when, and only when, M0(x0, y0, z0) ∈ �̄ (�̄ and �̄∗ are the closure of the regions � and �*).
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For the variable point M(x, y, z) we will define in the set � × � the function f(M, t), which depends on the position
of the point M(x, y, z) in the region � and the instant of time t ∈ �, � = [t1, t2] (t1 and t2 are constants). If the function
f(M, t) is continuously differentiated m times in the set � × �, we will write f(M, t) ∈ Cm(� × �).

The function f̃ (M∗, t) will be termed an even (odd) continuation of the function f(M, t) to the set �* × � relative to
the y coordinate if, at any point M∗

0 ∈ �∗ and for any instant of time t0 ∈ �

(1.1)

where k = 1 (k = 2). Here, in the set (� + �*) × �, the function f(M, t) will be called an even (odd) function in y if it is
obtained by an even (odd) continuation in y from the set � × � to the set �* × �.

Below, we give without proof [the proofs do not present any fundamental difficulties and are given in: Khomasuridze,
N., The effective solution of some three-dimensional boundary and boundary contact problems of thermo-elasticity.
Doctorate Dissertation, Tbilisi, 2002.] a number of assertions that are of interest in themselves, are the basis for certain
important corollaries in linear and non-linear continuum mechanics and are employed in the formulation of a certain
approach, using uninterrupted continuation of the solution, to the solution of problems of the motion and equilibria of
bodies of complex shape.

2. Theorem of continuation in the case of classical thermoelasticity

We will consider a system of linear thermoelastic dynamic equations of motion of a body; we will call it system D.
We will introduce the following notation

(2.1)

Lemma 1. Let u0, υ0, w0 and �0 be the value of the solution of the system D at the point M0 ∈ � at the instant of time
t0 ∈ �. Then, at the same instant of time t0, the value of the solution of system D at the mirror-reflected point M∗

0 ∈ �∗
will be

(2.2)

where k = 1 (k = 2), if first: 1) 22 elastic and thermal characteristics are continued into region �* evenly, and their
derivatives with respect to y are continued oddly relative to the y coordinate [it is assumed that these characteristics
belong to the class C2 (�)]; 2) the functions X, Z and T̃ are continued to the set �* × � evenly (oddly), while the
function Y is continued oddly (evenly) relative to y [X, Y, Z, T̃ ∈ C1(� × �)].

Here, u, υ and w are the x-, y- and z-components of the vector of displacement U, � is the change in temperature of
the body, X, Y and Z are mass forces, T̃ is the intensity of the heat source and t0 > 0.

The elastic body is assumed to be inhomogeneous and anisotropic, and here the anisotropic body possesses a plane
of elastic symmetry y = const and is determined by 13 elastic characteristics, four thermal conductivities, the specific
heat under constant strain and four coefficients of linear thermal expansion.6 Each of these 22 elastic and thermal
characteristics is a function of all three coordinates.

Corollary 1. In the region � + �* and in the set (� + �*) × �: 1) 22 elastic and thermal characteristics are even
functions of y; 2) where k = 1 (where k = 2), the functions u, w, X(x), Y(y), Z(z), X, Z and T̃ are even (odd), whereas
the functions υ, Z(y), Y(z), and Y are odd (even) in y. Here, X(x), Y(y) and Z(z) are the normal stresses, while X(y) = Y(x),
X(z) = Z(x) and Y(z) = Z(y) are the shear stresses.

We will assume that the anisotropic inhomogeneous elastic body occupies a region � with a boundary surface
containing part S of the plane y = 0, and that conditions 1) and 2) of Lemma 1 are satisfied in the region � + S and in
the set (� + S) × � respectively. Then, the following theorem concerning symmetrical continuation of the solution at
k = 1 and antisymmetrical continuation of the solution at k = 2 holds.
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Theorem 1. Suppose that, in the plane S, irrespective of time, the conditions of symmetry (antisymmetry)

are satisfied.

Then the functions u, υ, w, � ∈ C3[(� + S) × �], that is, the solution in the set (� + S) × � of system D and of the
equations of system D, differentiated with respect to y, are continued uninterruptedly, together with their first, second
and third derivatives, through S to the set �* × �. Here, the solution of system D in the set �* × � is defined by the
equations

where k = 1 (k = 2); P0 denotes any function w, u, �, X(x), Y(y), Z(z), X(z), and Q0 denotes any function υ, Z(y), X(y), and
the notation (2.1) is taken into account.

Here and below, the subscripts x, y, z and t denote partial derivatives with respect to the corresponding coordinates
and time.

3. Continuation theorem in the case of a Cosserat medium

Following the moment theory of elasticity,7 we will now adopt the thermoelastic dynamic state of the inhomoge-
neous isotropic body, which occurs in Section 2, and characterized in the case under examination by the modulus of
elasticity E(x, y, z), Poisson’s ratio �(x, y, z) and five new elastic characteristics �(j) = �(j)(x, y, z), where j = 1, 2, 3, 4,
5 {�(j) ∈ C2[(� + S) × �], and �

(j)
y |S = 0}. We will assume that N(xx), N(yy) and N(zz) are normal stresses, N(xy), N(yx),

N(yz), N(zy), N(xz) and N(zx) are shear stresses, �(x), �(y) and �(z) are components of the microrotation vector, M(xx), M(yy)

and M(zz) are torsional micromoment stresses, M(xy), M(yx), M(yz), M(zy), M(xz) and M(zx) are bending micromoment
stresses and Mi = Mi(M, t) ∈ C1[(� + S) × �] (i = 1, 2, 3) are components of the mass micromoment vector.

Theorem 2. Suppose that, in the plane S, irrespective of time, the conditions of symmetry (antisymmetry)

are satisfied.

Then the functions u, υ, �, �(x), �(y), �(z), � ∈ C3[(� + S) × �], that is, the solution in the set (� + S) × � of the
system D̃ (D̃ is a system of linear thermoelastic dynamic equations of motion of a Cosserat body) and of the equations
of system D̃ differentiated with respect to y, are continued uninterruptedly, together with their first, second and third
derivatives, through S to the set �* × �. Here, in the set �* × �

where k = 1 (k = 2).
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First, the functions E, �, �(j) and Z, X, M2, T̃ (and Y, M3, M1) should be continued respectively into the region
�* and to the set �* × � evenly in y, whereas the functions Y, M3 and M1 (the functions Z, X, M2 and T) should be
continued to the set �* × � oddly in y.

A similar theorem also occurs in the case of the so-called combined moment theory of elasticity (Cosserat’s
pseudocontinuum).7

Note that the requirement given in Theorems 1 and 2, which is that the equations of system D and D̃, and these
equations differentiated with respect to y, have to be valid, besides the conditions of symmetry or antisymmetry, in the
plane S, is adopted occasionally below when formulating corresponding theorems in non-linear continuum mechanics
(in the theorems examined above, this requirement could be removed8).

4. Continuation theorems in the case of the strain of plates and shells and the flow of a viscous
incompressible fluid

We will further consider various differential equations and systems of differential equations of continuum mechanics
with the corresponding boundary conditions. Lemmas and theorems are then given concerning the uninterrupted
continuation of solutions of these equations and systems of equations.

4.1. Elastoplastic stresses in a plate

In the two-dimensional region �, the definition of the plane stress state that is obtained in a thin plate in the case of
small elastoplastic strains, taking into account the hardening of the material, reduces, when there are no mass forces,
to the integration of a differential equation in the stress function � (Ref. 9)

(4.1)

with the corresponding boundary conditions. Here

and E0 and a are constants (E(�)(M) > 0, where M ∈ �̄).
We will denote part of the straight line y = 0 by S and assume that S is part of the boundary of the region �. After

this, on S we will examine the conditions of symmetry

(4.2)

and the conditions of antisymmetry

(4.3)

where u and υ are the x- and y-components of the displacement vector, �(x) and �(y) are normal stresses and �(xy) is
the shear stress.

It can be proved that the conditions (4.2) and (4.3) are equivalent respectively to the following conditions

(4.4)

(4.5)
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4.2. The elastoplastic bending of a plate

In the case of small elastoplastic strains, taking into account the hardening of the material, the stress state of a
plate of constant thickness, examined above, is described, under bending, by a differential equation in the deflection w

(Ref. 10)

(4.6)

with the corresponding boundary conditions. Here

D0 and a are constants (D(w)(M) > 0, where M ∈ �̄) and q = q(x, y) is the prescribed load.
The following two types of condition will be examined on S

from which correspondingly the conditions of symmetry

(4.7)

and the conditions of antisymmetry

(4.8)

follow, where Q̃(y) is the generalized shearing force and M(y) is the bending moment.

4.3. Non-linear strains of flat orthotropic shells

In the two-dimensional region �, the geometrically non-linear stress–strain state of a flat orthotropic shell of positive
Gaussian curvature is described by the following equations in the stress function � and the deflection of the shell w

(Ref. 11)

(4.9)

Here

E1 and E2 are the moduli of elasticity, R1 and R2 are the principal radii of curvature, h is the shell thickness, �1 and �2
are Poisson’s ratios, G is the shear modulus and q(x, y) is the prescribed load.

Let S be part of the boundary of the region � and at the same time part of the straight line y = 0. Then the conditions
of symmetry on S will have the form

(4.10)
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where Q̃(y) is the generalized shearing force, υ is the displacement along the y coordinate and σ
(xy)
0 is the shear force

in the middle plane.
It can be shown that conditions (4.10) are equivalent to the conditions

(4.11)

In the isotropic case, when

Eq. (4.9) are transformed into Marguerre’s equations; from Marguerre’s equations, when R1 → ∞ and R2 → ∞,
the well-known Karman equations are obtained.

4.4. The flow of a viscous incompressible fluid

The isothermal flow of a viscous incompressible fluid in the three-dimensional region � is described by a
Navier–Stokes system of equations

(4.12)

where V = (n, �, w) is the velocity vector of the fluid in the Cartesian system of coordinate x, y, z; p is the pressure;
t ∈ [t1, t2] is the time; 	 is the density; 
 is the kinematic coefficient of viscosity; and G = (X, Y, Z) is the mass force
density vector.

Let S be part of the plane y = 0 and at the same time part of the boundary of the region �. Then, the conditions of
symmetry on S, irrespective of time, will be written in the form

or

(4.13)

where p(yz) and p(yx) are shear stresses.

4.5. Continuation theorems

Let � be a two-dimensional region and �* be its mirror reflection in the straight line y = 0, i.e. M∗
0 (x0, −y0) ∈ �̄∗

when, and only when, M0(x0, y0) ∈ �̄, and for now let y0 > 0. Then, for the solutions of Eqs. (4.1) and (4.6), the
following lemma holds (we will formulate it for Eq. (4.6)).

We will introduce the notation

(4.14)

Lemma 2. Let w0 be the value of the solution of Eq. (4.6) at the point M0 ∈ �. Then, the value of the solution of Eq.
(4.6) at the mirror-reflected point M∗

0 ∈ �∗ will be

(4.15)

where k = 1 (k = 2) if the function q is continued into the region �* evenly (oddly) in y.

The lemma concerning the solution of Eq. (4.1) is obtained from Lemma 2 if w in the latter is replaced by � and if
it is assumed that q = 0.

Theorem 3. Let S be part of the straight line y = 0 and at the same time part of the boundary of the region �,
and let the conditions of symmetry (4.7) (the conditions of antisymmetry (4.8)) be satisfied on S. Then the function
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w ∈ C4(�) (the function w ∈ C4(� + S)), that is, the solution of Eq. (4.6) in the region � (in the region � + S), is
continued uninterruptedly, together with its derivatives with respect to the fourth order, through S into the region �*

if the function q is continued evenly (oddly) in y in �*. In this case, in the region �*

where k = 1 (k = 2).

Remark 1. The properties of the plate material in Lemma 2 and Theorem 3 are assumed to be identical at the points
M0 and M∗

0 , but the function D(w) characterizes the material from which the plate is made, and therefore the conditions

(4.16)

must be satisfied in the case of both symmetrical and antisymmetrical continuation of the solution of Eq. (4.6).

Remark 2. Theorems similar to Theorem 3 can be considered to be valid for the solution of problems (4.1), (4.4) and
(4.1), (4.5). Furthermore, since E� is a characteristic of the plate material in the case of a plane stress state, it follows
that, like conditions (4.16), the following conditions hold

(4.17)

Lemmas and theorems will now be given concerning the continuation of the solution of the systems of differential
Eqs. (4.9) and (4.12).

Lemma 3. Let �0 and w0 be the value of the solution of the system (4.9) at the point M0 ∈ �. Then, the value of the
solution of this system at the mirror-reflected point M∗

0 ∈ �∗ will be

if the prescribed load q is continued into the region �* evenly with respect to the y coordinate.

Theorem 4. Let S be a part of the straight line y = 0 and at the same time part of the boundary of the region �, and
let the symmetry conditions (4.11) be satisfied on S. Then, the functions �, w ∈ C4(�), i.e. the solution of system of Eq.
(4.9) in the region �, are continued uninterruptedly, together with their derivatives with respect to the fourth order
inclusive, through S into the region �* if the function q(x, y) is continued into the region �* evenly in y.

Below we will return to the notation (2.1).

Lemma 4. Let u0, υ0, w0 and p0 be the value of the solution of system (4.12) at the point M0 ∈ � at the instant of
time t0 ∈ �. Then, at the same instant of time t0, the value of the solution of this system at the mirror-reflected point
M∗

0 ∈ �∗ will be

if the functions X and Z are continued to the set �* × � evenly, and the function Y is continued oddly in y.

Theorem 5. Let S be part of the plane y = 0 and at the same time part of the boundary of the region �, and suppose
that on S, irrespective of time, the symmetry conditions (4.13) are satesfied. Then the functions u, υ, w, p ∈ C2 (� × �),
that is, the solution of system of Eq. (4.12) in the set � × �, are continued uninterruptedly, together with their first and
second derivatives, through S to the set �* × � if X and Z are continued to the set �* × � evenly and Y is continued to
the set �* × � oddly in y. Here, the solution of Eq. (4.12) in the set �* × � is defined by the equations

where P0 denotes any function u, w, p, p(xx), p(yy) and p(xz), and Q0 is any function υ, p(xy) and p(zy).
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5. Some conclusions and generalizations

Let us consider a number of corollaries from the boundary conditions of symmetry and antisymmetry that have
been widely used in the present paper.

Proposition 1. If the boundary conditions of symmetry are satisfied in the plane S, it remains a plane after strain,
whatever this strain (linear, non-linear, elastic or plastic), since the points of the deformed medium that lie in the plane
S before strain remain in S after the strain. In other words, for the doubled region � + S + �*, the plane S remains after
strain, the same plane S and, moreover, it remains a plane of symmetry for components of the displacement vector and
the strain tensor (stress tensor) whatever the strain.

Consequently, if the boundary conditions of symmetry for the continuum are satisfied, the fundamental principle of
symmetry should be satisfied.

Proposition 2. If, however, the boundary conditions of antisymmetry are satisfied in the plane S, then this plane, after
strain, changes its position and is transformed into a certain non-planar surface; in other words, the points of the
deformed medium that lay in the plane S before the strain do not remain in it after the strain. Therefore, the principle
of antisymmetry is conditional and occurs only for small displacements and strains.

We will illustrate this for the case of the theorems set out in the previous section.

Proposition 3. Theorems 1 and 2 concern linear problems of elasticity for small displacements, strains and angles
of rotation, and therefore relate both to symmetrical and antisymmetrical continuation of the solution.

Theorem 3, which concerns the problem of small elastoplastic bending of plates, although such bending leads
to a non-linear differential equation, relates both to symmetrical and antisymmetrical continuation of the solution on
account of the smallness of the displacements and strains. In Theorems 4 and 5 the strains (Theorem 4) or displacements
(Theorem 5) are not small (finite), and therefore only symmetrical continuation of the solution is given in them, since
the corresponding differential equations do not allow antisymmetrical continuation of the solution.

Remark 3. Satisfaction of the principle of symmetrical continuation of the solution with satisfaction of the symmetry
conditions on the plane part of the boundary of the medium is obligatory in continuum mechanics; consequently,
this principle is one of the important criteria in assessing a particular mathematical model in continuum mechanics
problems.

Note that conditions (4.16) and (4.17) given in Remarks 1 and 2 can also be used to evaluate certain mathematical
models, in particular for evaluating mathematical models in plasticity theory.

6. A practical application of the theorems concerning the uninterrupted continuation of solutions

We will now touch upon some questions of the practical application of the principles of symmetry and antisymmetry.
Consider a rectangular parallelepiped

of orthotropic material inhomogeneous with respect to z. For simplicity, we will assume that there are no internal and
external disturbing fields and mass forces. Then, on the side faces x = 0, x = x1, y = 0 and y = y1 let the conditions of
symmetry be satisfied, on the boundary z = 0 let a uniformly distributed normal load q0 be specified, and in the middle
of the face z = z1 on a small area s let a normal load q1 (x1y1q0 = sq1) be uniformly distributed, and on both faces, i.e.
at z = 0 and z = z1, let the shear stresses be zero.

Suppose there is a solution of the problem of the equilibrium state of the parallelepiped. Then, the solution of
problems for bodies with a more complex geometric shape can be reduced to this solution, since a parallelepiped with
a definite stress state can serve as the basis (the “building block”) for constructing the stress state of a body of complex
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Fig. 1.

Fig. 2.

shape (true, with a constraint imposed on the surface load). This is so indeed, in view of the fact that the symmetry
conditions on the side faces of the parallelepiped make it possible uninterruptedly to continue the solution and to obtain
a region of more complex shape.

We will clarify this by means of illustrations.
Fig. 1 shows a rectangular parallelepiped with prescribed loads on its faces z = 0 and z = z1. Fig. 2 gives examples of

bodies of more complex shape that were obtained as a result of using the parallelepiped shown in Fig. 1 as a “building
block”. Of course, the stress state of the bodies shown in Fig. 2 are determined by the stress state of the parallelepiped
shown in Fig. 1.

It must be pointed out, in particular, that the loads q0 and q1 may cause both linear and non-linear strains and both
elastic and elastoplastic strains in the parallelepiped.

If the antisymmetry conditions are satisfied on the side faces of the parallelepiped, the load q0 = 0 and the load q1
causes small displacements and strains, then in Fig. 2 the load q1 on certain blocks should be in the opposite direction.
In particular, in Fig. 2a these are blocks 2, 4, 6 and 8, and in Fig. 2b they are blocks 4 and 6.

The stress state for a parallelepiped/block in some cases can be found effectively (for example, this is done in Ref. 12
for a transversely isotropic parallelepiped), and thereby we will have effective solutions for bodies of complex shape.
Such solutions can be used, at the very least, as model solutions for checking the accuracy of a particular approximate
method.

As the “building blocks” for constructing the stress state of a body of complex shape, besides a rectangular
parallelepiped, it is possible to use other bodies bounded by the coordinate surfaces of the selected system of coordinates.
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